1. | Diketahui $g(x)=x+1$ dan $f(x)=x^2+x-1$. Komposisi fungsi $\left( f\circ g \right)(x)$ = …. |
| | $x^2+3x+3$ |
| | $x^2+3x+2$ |
| | $x^2+3x+1$ |
| | $x^2+3x-1$ |
| | $x^2+3x+1$ |
2. | Jika $f(x)=2-x$, $g(x)=x^2+1$ dan $h(x)=3x$, maka $\left( h\circ g\circ f \right)(3)$ = … |
| | $-80$ |
| | $-6$ |
| | 6 |
| | 80 |
| | 81 |
3. | Jika $f(x)=x^2+1$ dan $g(x)=2x-1$, maka $\left( f\circ g \right)(x)$ = …. |
| | $2x^2+1$ |
| | $2x^2+2x+1$ |
| | $4x^2-4x+2$ |
| | $4x^2+2x+2$ |
| | $4x^2+4x-2$ |
4. | Jika $f(x)=2x-3$ dan $\left( g\circ f \right)(x) = 2x+1$ maka $g(x)$ = …. |
| | $x+4$ |
| | $x-4$ |
| | $2x+3$ |
| | $2x+4$ |
| | $2x-4$ |
5. | Dari fungsi $f$ dan $g$ diketahui $f(x)=2x^2+3x-5$ dan $g(x)=3x-2$. Agar $\left( g\circ f \right)(a)=-11$, nilai $a$ yang positif adalah …. |
| | $2\frac{1}{2}$ |
| | $1\frac{1}{6}$ |
| | 1 |
| | $\frac{1}{2}$ |
| | $\frac{1}{6}$ |
|
6. | Diketahui $f:R\to R$, $g:R\to R$, $g(x)=2x+3$ dan $\left( f\circ g \right)(x)=12x^2+32x+26$. Rumus $f(x)$ = …. |
| | $3x^2-2x+5$ |
| | $3x^2-2x+37$ |
| | $3x^2-2x+50$ |
| | $3x^2+2x-5$ |
| | $3x^2+2x-50$ |
7. | Jika $g(x+1)=2x-1$ dan $f(g(x+1))=2x+4$, maka $f(0)$ = …. |
| | 6 |
| | 5 |
| | 3 |
| | $-4$ |
| | $-6$ |
8. | Ditentukan $g(f(x))=f(g(x))$. Jika $f(x)=2x+p$ dan $g(x)=3x+120$ maka nilai $p$ = …. |
| | 30 |
| | 60 |
| | 90 |
| | 120 |
| | 150 |
9. | Jika $\left( g\circ f \right)(x)=4x^2+4x$ dan $g(x)=x^2-1$, maka $f(x-2)$ adalah …. |
| | $2x+1$ |
| | $2x-1$ |
| | $2x-3$ |
| | $2x+3$ |
| | $2x-5$ |
10. | Jika $f:R\to R$ dengan $f(x)=2x-2$ dan $g:R\to R$ dengan $g(x)=x^2-1$ maka $\left( f\circ g \right)(x+1)$ = …. |
| | $2x^2-4$ |
| | $2x^2-5$ |
| | $2x^2+4x-2$ |
| | $2x^2-4x+1$ |
| | $2x^2-2$ |
|
11. | Diketahui $\left( f\circ g \right)(x)={{4}^{2x+1}}$. Jika $g(x)=2x-1$, maka $f(x)$ = …. |
| | $4^{x+2}$ |
| | $4^{2x+3}$ |
| | $2^{4x+1}+\frac{1}{2}$ |
| | $2^{2x+1}+\frac{1}{2}$ |
| | $2^{2x+1}+1$ |
12. | Jika $f(x)=\frac{1}{2x-1}$ dan $\left( f\circ g \right)(x)=\frac{x}{3x-2}$, maka $g(x)$ = …. |
| | $2+\frac{1}{x}$ |
| | $1+\frac{2}{x}$ |
| | $2-\frac{1}{x}$ |
| | $1-\frac{2}{x}$ |
| | $2-\frac{1}{2x}$ |
13. | Jika $g(x-2)=2x-3$ dan $\left( f\circ g \right)(x)=4x^2-8x+3$, maka $f(-3)$ = …. |
| | $-3$ |
| | 0 |
| | 3 |
| | 12 |
| | 15 |
14. | Jika $\left( g\circ f \right)(x)=-9x^2-6x$ dan $g(x)=-x^2+1$, maka $f(2x+3)$ = …. |
| | $6x+4$ |
| | $6x+10$ |
| | $2x+4$ |
| | $2x+1$ |
| | $3x+1$ |
15. | Jika $f(x-2)=3-2x$ dan $\left( g\circ f \right)(x+2)=5-4x$, maka nilai $g(-1)$ adalah …. |
| | 17 |
| | 13 |
| | 5 |
| | $-5$ |
| | $-13$ |
|
16. | Jika $f(x)=\sqrt{x}$, $h(x)=2x+1$ dan $\left( f\circ g\circ h \right)(x)=\sqrt{4x^2+8x+3}$, maka $g(-1)$ = …. |
| | $-1$ |
| | 0 |
| | 1 |
| | 2 |
| | 3 |
17. | Diketahui $f(x)=2x-1$ dan $g(x)=\frac{5x}{x+1}$. Jika $h$ adalah fungsi sehingga $\left( g\circ h \right)(x)=x-2$ maka $\left( h\circ f \right)(x)$ = …. |
| | $\frac{2x-3}{2x+8}$ |
| | $\frac{2x-3}{-2x+6}$ |
| | $\frac{2x-3}{2x-8}$ |
| | $\frac{2x-3}{-2x+8}$ |
| | $\frac{2x-3}{-2x-8}$ |
18. | Jika diketahui $\left( f\circ g\circ h \right)(x)=\frac{{{(x+1)}^{10}}}{{{(x+1)}^{10}}+1}$, $f(x)=\frac{x}{x+1}$, dan $h(x)=x+3$, maka $g(x+5)$ adalah …. |
| | ${{(x-2)}^{10}}$ |
| | ${{(x+3)}^{10}}$ |
| | $(x+5)$ |
| | ${{(x-2)}^{8}}$ |
| | ${{(x-3)}^{10}}$ |
19. | Jika $f(x)=\sqrt{x^2+1}$ dan $\left( f\circ g \right)(x)=\frac{1}{x-2}\sqrt{x^2-4x+5}$, maka $g(x-3)$ = …. |
| | $\frac{1}{x-5}$ |
| | $\frac{1}{x+1}$ |
| | $\frac{1}{x-1}$ |
| | $\frac{1}{x-3}$ |
| | $\frac{1}{x+3}$ |
20. | Jika $f(x+1)=2x$ dan $\left( f\circ g \right)(x+1)=2x^2+4x-2$, maka $g(x)$ = …. |
| | $x^2-1$ |
| | $x^2-2$ |
| | $x^2+2x$ |
| | $x^2+2x-1$ |
| | $x^2+2x-2$ |